Volumetric Analysis of Chloride Introduction

Volumetric analysis is a method for determining the composition of a substance by precisely measuring the volume of a reacting substance. The amount of a substance present can be determined by finding the volume of a chemical point is usually signified by an indicator.

In this experiment we will determine the composition of an unknown chloride salt (XCl) by reacting chloride and silver ions to produce a silver chloride precipitate.

 Ag^+ (aq) + Cl^- (aq) -> AgCl (s)

We will begin our experiment by first adding our unknown XCl sample to water. The XCl will disassociate in the water into Cl^- and X^+ ions:

XCl (s) + H_2O (aq) -> X^+ (aq) + Cl^- (aq) + H_2O (aq)

We then add a solution of Potassium Chromate (K_2CrO_4) to serve as an indicator. The potassium chromate will change our unknown solution to a yellow color.

A 1M solution of AgNO₃ is added to serve as the source for our Ag^+ ions. As AgNO₃ is added AgCl will precipitate out of the solution. The initial quantity of Cl⁻ ions present serves as the limiting agent to our reaction.

The CrO_4^{2-} ion will react with excess Ag+ ions once all the Cl- ion, which has a greater affinity to react with Ag+ ions, is completely consumed. This will trigger a color change in our solution from yellow to reddish-brown as the reddish Ag₂CrO₄ precipitates out.

2 Ag+ (aq) +
$$CrO_4^{2-}$$
 (aq) -> Ag₂CrO₄ (s)

The Volume of AgNO₃ added is used to determine the moles of AgCl created.

Moles of $AgCl = Moles of AgNO_3 added = (Volume of AgNO_3 added) X (Molarity of AgNO_3)$

We can determine the % of Cl⁻ present in are unknown:

Moles of Cl^- = moles of AgCl

Weight of Cl⁻ in XCl sample = (moles of Cl⁻)x(atomic weight of Cl⁻ = 35.4527)

% Cl⁻ in sample = (weight of Cl⁻ in XCl sample / weight of XCl sample) x 100 %